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The theoretical analysis of exact element patterns from circum- 

ferential and radial slots near the tip of a sharply tipped cone has 

been completed and presented in the final report on Contract No. N0O19-73-C-0127 

(Bargeliotes, Kummer, ind  Villeneuve, 197A) .  In both cases, the element 

patterns have been obtained by summation of the normal mode series 

provided by the angular eigenfunctions of the boundary value problem 

expressed in spherical coordinates.  Relatively few modes are required 

for the convergence of the series for slot locations near the tip of 

the cone, the number of modes increasing with increased 

distance from the tip.  In addition, computational difficulties from 

accumulated round-off errors also hinder the applicability of the modal 

series program for element locations far from the tip. 

The normal mode series may be derived from related integrals 

evaluated as a sum of residues taken over the poles of the integrands 

(Pridmore-Brown, 1972).  This integral represertation of the fields 

lends itself to asympotlc approximations which allow the separation 

of the diffraction field and the geometric optical field.  In turn, 

the diffracted field may be expressed as a product of some frequency- 

independent angular functions or diffraction coefficients, «^(8, 0o) , 

and a function f(r + a) / (ka) ^-^.     Here e0 is the exterior cone 

angle, a is the distance from the tip to the slot measured along the 

generatrix, and k is the wave number.  The geometry Is shown in Figure 

1.  For slots far from the tip this representation of the diffraction 

field is better suited for numerical computation than the modal series. 

:-~.     ...,..,,.,.    Qggg ,. ,.  • 
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The  approximate evaluation of  the  contour integrals  representing 

the e-component of  the electric  field  of a  circumferential slot 

resulted  in explicit expressions of  the field  in terms of the diffraction 

coefficients mentioned above   (Pridmore-Brown,   1972).     An attempt  to 

utilize  these expressions  for the numerical  computation of the diffraction 

coefficients and   the field  itself  revealed  some inconsistancies or 

omissions  among  the  piven  parameters.     In an  effort  to  correct  these 

deficiencies,   the  complete  derivation of  the  expressions was undertaken. 

Additionally,   for  a complete pattern  analysis  or synthesis  technique, 

similar  expressions are  also required  for  the diffraction coefficient 

associated with  the (^-polarization. 

The  integral  expressions for  the  scalar  potential  functions  that 

determine   the  radiation  fields due  to  a cosmcf)  excitation are of  the 

form   (Pridmore-Brown,  1972) 

/- 
vdv Am (e.ej i-vj   (ka) 

2       i V     " t 
where  the  angular  factor A m (e,#0)   is a ratio of associated Legendre 

functions  and  the  integrals  are taken over a hairpin  contour enclosing 

the positive    real  axis  in  the complex  v-plane.    On displacing the 

contour  to the right over a large number of poles as shown in Figure 

2,we have a finite sum of  residuer and a contour integral in which  the 

Legendre  functions are replaced by theii  asymptotic representations  to 

order  1/v with  v>>  1.     In  the finite  sum of  residues   the  Bessel   function 

is replaced by  an asymptotic  representation,  while in  the contour  integral 

Its Sommerfeld integral representation is used.    The Bessel function 

contour   (noted as Cy in Figure 3 is displaced so as to pass through 

m 
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the two saddle points at y = 0 and y = TT in the complex y-plane. As 

noted by Pridmore-Brown, the contribution from the poles that are crossed 

in this process and the encountered branch cuts yield the optical and 

transition fields.  The saddle point Integrations give terms proportional 

to (ka)-1'2.  These terms and the finite residue sum are then transformed 

Into an equivalent modified residue series.  The number of terms In 

Üthe residue series is then allowed to increase without limit. The 

resulting series Is summed in the Cesaro sense and represents the 

field diffracted by the tip. 

It should be noted that In the above method of evaluation of 

these integrals (Prldmore-Browu, 1972) the condition ka >>N>> 1 Is 

imposed.  Here ka Is the location of the slot relative to the tip of 

the cone and N Is the number of poles over which the hairpin contour 

is shifted to the right.  Subsequently, N is allowed to Increase without 

limit, which requires that ka also increase without Unit If the 

Initial condition ka »N>> 1 is to be satisfied.  In fact it must Increase 

B       proportional to N2. Thus, performing the limiting operation would 

appear to make all terms but the optical term negligible.  Therefore 

it is recognized that interpretation of the results obtained here is 

not clear.  Even so, Pridnore-Brown obtained numerical results for the 

e-component of the field that were in very good agreement with results 

0       computed from the modal series even for moderate values of ka.  The 

exact reason for this good agreement is not yet understood, but should 

be investigated further.  In addition, the possibility of using a 

similar approach, but without letting N approach infinity should be 

Investigated in an effort to extend the applicability of the results 

to even smaller values of ka. 

I 
I 
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In  this  report,   tlie analysis of  Pridmore-Rrown is  reviewed,   some 

typographical errors are corrected and  some additional details are 

supplied.     We shall  begin by  first giving the  formal defining equations 

of both components  of  the  electric  field   in Section 2.     We shall 

also point  out here  the necessary corrections and omissions  in the supporting 

equations  leading  to  the final  expression of  the  e-component of  the 

electric  field. 

In Section  3,   the analysis  is extended  to  apply to   the (^-component 

of  the electric  field,  resulting in  the  separation of  this  field 

component  into  transition and  diffraction fields.     It  is   found  that, 

unlike  the  B-component,  the  ^-component  is not  represented by an 

optical  term, whereas  the diffraction  coefficients have  the  same 

I 

10 

II 

variation  in ka  for both components.     Throughout   the above  two sections 

we  follow very  closely the  formulation and analysis presented by 

Pridmore-Brown   (1972)   and  the  companion paper   (Pridmore-Brown,   1973). 

The same notation will be used   throughout  unless  specifically stated 

otherwise.     Some  algebraic  details and  transformations  associated with 

the various  integrations will be included  in  the appendices. 

Also during  this  program,  the radiation patterns of  circumferential 

and  radial  slot  elements 6.22 wavelengths  from the tip of  a  cone were 

measured at  a  frequency of  10.38 GHz.     A number  of  the measured 

patterns are  shown   together with corresponding  computed  patterns 

in Section A.     The  computed  patterns were  obtained from  the modal 

series computer program.     Except for a few discrepancies which are 

explained,   the agreement between measured  and  computed  patterns  is 

("I very good  for both  the clrcumferentiallv  and  the  radially directed 
I 

element. 

■ 
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2.0  GENERAL FORMULATION OF THE ASYMPTOTIC APPROACH 

The geometry under consideration Is a perfectly conducting conical 

surface coinciding with the coordinate surface 6=9 of a spherical coor- 

dinate system r,9,^ as shown in Fig, 1.  A narrow aztmuthal slot located 

at r = a is excited by an alternating voltage 

(1) V0 cosm«S exp(-lu)t) 

The external field generated by this excitation is given by 

E = curl curl (r?^)    + k curl (rn2) (2) 

where Jl^, and IIj are scalar potential functions and are given by equations 

(3) and (4) of Prldmore-Brown (1972).  The field components are obtained 

from equation (2), giving 

K lo     ,_   A 
6 --     (2iTka) cosm/  exp[i (kr - TT/4) ]   PQ (3) 

where 

im^   
9    P19 " sin9 sin9   P29 (3a) 

1   /  udv   »  » ,      -u 
P19 = "^T /  Ä A^ (G'eo> '   Jv(ka) (3b) 

vdv 
29    2vi J     ^ ^v^' o 

C.1 

r"m  (cos9) 
Alv(9.9o)    jdL 

A,, (9,9 ) i~v ^'(ka) (3c) 

v-h 

1\)      ' o 

i 
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A2v(e.e0) ■ 

where 

p""1, (cosG) 

2v °'    ,a/aÄi  p-m (;»/3e) p  (cose) 
v~h 

(5) 

eo 

(a)'  V* ^(x)    f^r i.(x) w 

and 
V 

E  = -—  /Zirka ra sinm^ exp[i(kr - Tt/4) ] P- 
*    r * 

(7) 

P  = _-rl_ P   + _J  p (7a) 
4» sine  W    sinert  2*5 

- —  /    vdv   A, (e,< p   =       |   vdv   4 (e,eo) i V J (ka) (7b) 
TP      2Tii /    n .    lv   o     v 

" 2.1 j 
P '   I   _j;dv_  AO '(e,en) i i; ^•(ka) (7c) 
2^      2Tii  /   VZ.L   2v    0      v 

c 
V 

The integrals are taken over a hairpin contour enclosing the positive 

real axis of v > h-     (Primes denote derivatives with respect to the argu- 

ment or with respect to the first argument in the case of two arguments. 

For clarification, we have also added the subscript e,^ to denote 

quantities corresponding to E« and E,, respectively.) 

The above expressions may also be obtained by inspection from the 

corresponding azimuthal terms in the modal series expressions, noting the 

exp(j(jJt) time dependence which has been assumed in our previous reports. 

This variation is in contrast to the exp(-ioit) used by Pridmore-Brown. 

8 
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This difference is accounted for by taking the complex conjugate of the 

modal series in our previous reports.  In addition, the slot dimension in 

the previous reports introduces a constant multiplier to the fields.  Both 

of these points must be kept in mind in any comparison between our previous 

modal series results and the results from the present analysis. 

2.1 On the Transition Field of E„ 

In this section we shall make the necessary corrections to the different 

expressions given by Pridmore-Brown (1972) and in addition derive some 

missing quantities necessary for a useful expression of the 9-component.  In 

the following corrections the numbers of the equations used by Pridmore-Brown 

(1972) are retained for convenience.  Equation (13) should read 

Bln(9.90) - llm(v-vn) Alv(9.eo) = 

v->-v 

-m 
(cosG) 

-m 
O/nv) P i (cose0) 

(13) 

v = v 

Similarly, the residue of A2n at its nth pole Is 

B2n(e'V " lim^-Mn) A2vj(e,e0) = 

p"m  (COSÖ) 

02/9eo3p)   p-     (cose ) 
M "2 u 

(13a) 

H • y 

The expression for <i>n(Y,9) below equation (23) should be 

VY.#)   -   r^1 nn ^ rn x2n + r- ^ + r—1 x 

Equation   (26)   should  be multiplied  by   (-1) 

4n 
(23a) 

;■ 
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The expression for  the complementary error function below equation   (27) 

should be 

erfc(z) 
if / 

exp(-t2)  dt (27a) 

with asymptotic   form 

erfc(z)     -    mSzLl      + 0(z-3) 
,  ,1/2 
(TT)       Z 

(27b) 

Equation (35) should be multiplied by (-1).  In equation) (30) the arguments 

of the f and g functions should be |u|. 

In the evaluation of the first-order contour integral, the deformed Cy 

contour must also go around the branch cuts.  The branch cut contribution 

is of comparable magnitude to the rest of the transition field and must be 

retained in the final expression of the field. A closed form expression 

for the branch cut contribution is given by the author in the second paper 

(Pridmore-Brown. 1973).  The first-order transition field which is evaluated 

for small a now becomes 

Ta) 
1TF / 

dy exp(ika cos  )   In 
a-Y 

+  1 (1) 
BR (a)  H  (a) 

=      ("TT")   ' exp(1   (ka " pj   Ö(U)  + 1^ ((x)H(a) 

where H (a)   is  a unit  step  function, 
oo 

U(u)     ■     1_     /     dx exp(-x2)   In(w-x)   -Inw 

X     J 

(37a) 

10 
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and I   (a) represents the contribution from the branch cut.  The details 
BR 

of the above evaluation are Included In Appendix A along with further 

description of the U(u) function in terms of the plasma dispersion function. 

d)' 
The leading terms in the expansion of the function A   (e»e0) 

of 

equation (20) in traveling waves are 

d)' 
A    (9,9 )  = 
Iv      0 \sinQ   I 

l(* + i|>) UK -  *) 
n • -n+e (38a) 

where 

l±irii_  cot 9   ±    ^-^    cot 9, 
8 8 

The above result of the expansion is used to obtain the complete 

first-order transition field which includes thp contributions from the 

branch cuts corresponding to a,0 and o^o*  
The first-order transition field 

is  then 

1TF 
1      /sln90\

iäi (D,       ,u,      , $(«20)-rn.Ji ^-}) u(u10) 

(38) 

where '10 [*)     aio- 

2•2 On the Diffracted Field of E 

In the approach used by Pridmore-Brown the diffracted field is given 

by the Cesaro sum (Wiltaker and Watson, 1944) of the residue series.  In 

calculating the Cesaro sura, the terms in the residue series are modified 

by adding and subtracting terms whose Cesaro sum can be calculated in 

closed form.  This procedure results in a closed form sura plus a convergent 

11 
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series that can be summed numerically.  The terms to be added and sub- 
i 

tracted are determined by the following method.  The function B^ (0,eo) 

is first expanded into zeroth-order and first-order terms in The 

details of  this  expansion are shown  in Appendix  B.     The Cesaro  sum of 

these  zeroth-order  terms  is  then 

Q(«.eo)   -£ Qn(e,e0) -£ 

(c,i) 

L (sin9o\ 
% \slne / 

:j_ /sin9oY2 \^ai 
^0    isine j        Lslna 

(0) -lvi0)n 
cos vn   (eü-e)e    n 

sinß (47) 

where 

a    ■ ~   (IT -e   + G) 
2eo 

26 (TT+eo - e) 

M     =     -(m+ %) 

Similarly,   a  closed   form  for  the  sum of  the  first-order terms may be  found. 

R(e,eo)  = £ Rn(e.e0) (47«) 

The individual terms, R (e,90), in the above series are obtained from the 

original first-order expansion by replacing the magnitude factor l/\in 

by eo/mT, giving 

Rn(e'eo) * 55 
1 (^o\h    \ .       (0).o 0.  . 
.IT ^sinö ) \  s]n vn  (öo-9> -in 7 cos v

(0)(e -e) 
z     n   0 

exp(-i v  TT) 

(47b) 

Substituting (A7b) in (A7a) and carrying out the indicated summation, we 

find 

12 
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R(o.0o) 

where 

7^\Ii^e£/        {nl(8i(a,C)'gi f0»«)+«»2(ll(«>O+t1(8.C))} (47c) 

■laf 
g^a.C)   ■  -e        '  [ln(2|slna|)   -l(a     .   - i )] 

mod-rr     2 

l^e.C)   - -e-1^  [ln(2|slnß|)  -i(tmodir- 1 )] 

? =    m - 4 

a,ß defined  below Equation   (47)   above. 

A complete  expression of Eradiation field   in  terms  of  the optical, 

transition,  and  diffraction  fields may now be written  from the  above  results 

and  the results of Pridmore-Brown   (1972,1973),     Thus, 

* i/"C0Se
o\   ^ 

C6  -  cos m*    [  [exp(ikR)  + F expUkR')   H(TT - 6     -e)+TF] 
( \  sine    / o      ' J 

exp[lk(r+a)] , ) 

(ka)1^ 

where 
2Tri  cot(Tr  - 6,,) 

ka 

r-a  cos(e - eo) 

R'    ■    r-a co8(e + 6 ) 

H(a)   is a step function,   CTTCa)  - 1 for a > 0) , ,Jn< 0. 

1 t \*} (l) vL 

In the above equation the symbols have the following meanings: 

13 
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ll 
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(i 
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ö 
a 
i 

ö 
o 

r - K-i) 

3 + 4m? 1 - 4m2 

cot  6    +    —=—      cot  9 
B o O 

(1) 
[BR 

m ika cosa(l+,5  tan?a]   /      2vi      \h (  f 
\ ka cosa / y* 

Ika cosa  tan  oi 
2 ) 

T(u)     = 

'10 

l10 

«20 

i erfc Cr^N)-^] sgn(u) 

10 

U(u)     = 

7i - e - e 
o 

IT - e0 + e 

oo 

1 f 
exp(-x  )  Ln(w-x)   -  Lnw 

w 
/ikaH /iw\l| 

,,(0,9  )     =     (2Tricote  ) mo o Q(e,eo)+R(e,e0)+X; sln + 
n=l 

m 
sine sinQ 0  n-l     J 

Sln    B    7^77      Bln   (fl'eo>   ^P(-i^)   - Qn(e.eo)  " ^n^.e^ 

Q,   Qn,  R,   Rn are  given by equations  (47),   (47a),   and   (47b) 

-m 

V^'V 
n      tf- - in 
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B2n(e'eo) 

~m 
Pg ,  (CM«) 

no       ll     z 

-m -m 
vn,   u    are  the  roots of  P (cosG)  ■  0 and   $/3tJ   P (cose„) 

respectively,  as  in  the modal  series,   and 

(0) 
(nn  -  TI/4 + m T\/2)/B n =  1.2, 

The notation Ln denotes the principal value of the logarithm (jarg] < IT). 

It is seen that the diffraction coefficients c (e,eo) are explicit 

functiqns of the coordinates 9,8 , It is this property of the diffraction 

coefficients which makes this analysis attractive for computation of 

patterns from slots far away from the tip of the cone. 

In numerical calculations the seemingly singular point at a = TT/2 

of the branch cut function, IBR (a), is overcome by using the asymptotic 

form of the defining expression. This gives 

(1)  r . . 2TTe 
ika cosot 

ka sina 

which at TT/2 becomes 2TT/ka end  can be neglected when compared to other items 

Also, the function T(u) may be alternatively computed by the expression 

T(u) - [f (|u|) +8(|u|)+ i [f(lu!)-g(|u|)] - _L±i. ] sgn(u) 

IT  U 

where f (ju j) and g(|u |) are functions related to the Fresnel integrals and have 

simple rational approximations [Abramowitz and Stegun, 196A.] 
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As it was pointed out in the introduction, the above expression of 

the diffracted field has been obtained by allowing N to go toco. 

diff 

lim 

N -+• D0 
(P,   + P,  ). Ires   Isp 

This limiting process disregrrds the condition ka >> N >> 1 imposed at 

the outset, unless ka is also allowed to go to m  faster than N.  The 

field expressions derived by using this limiting process are then used 

for relatively small values of ka, ka > 10, with satisfactory results 

over most of the range of 9 (Pridmore-Brown, 1972). 

At this point an additional comment on the procedure of Pridmore- 

Brown is in order.  In evaluating the zero order integral by the method 

of steepest descents he separates the result into a so-called saddle 

point contribution and a transition field that results when a pole exists 

near the saddle point.  The two terms together remain finite when the 

pole approaches the saddle point.  However, separately, each has a singu- 

larity at the saddle point.  In performing his Cesäro summation, Pridmore- 

Brown argues that the series containing the contributions from the saddle 

points gives no contribution to the sum and it is neglected.  The remaining 

transition field now has a singularity when the pole is at the saddle 

point.  However, the Cesäro sum of the residue series provides the proper 

singularity to cancel the singularity in the transition fields and the 

resulting fields remain finite.  A similar type of thing happens with 

the first order terms as well.  Thus, though his diffraction fields and 

transition fields each have singularities, the total fields determined 

by his method remain finite. 
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It may be possible, however, to separate the diffraction field from 

the optical and the transition fields without the need to let N to to ■ 

by simply adding the non-singular terms of P   to the two finite residue 

sums.  The terms of P   containing the singularities, (n = 0 terms), are 
lap 

grouped with the transition field.  In this manner it may be possible to 

apply the technique to smaller values of ka than would otherwise be 

possible.  At the same time the singularities in the diffracted field 

introduced by the limiting process will no longer be present.  This 

alternate approach should oe examined further. Also, numerical computations 

should be undertaken to verify the study results. 
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3.0 REPRESENTATIONS OF THE L .-COMPONF.NT 
v 

The formal expressions of the /-component of the electric field are 

given by equation (7) where the integrals are taken over the hairpin con- 

tour enclosing tiie positive real axis of v, as was done for the r:Q-com- 

ppnent.  In comparing the form of the Integral expressions of this com- 

ponent with that of E , we see that the only difference is the interchange 

of the differentiation with respect to 0 of A,  and A„  functions.  In 
iv      2v 

view of this similarity, we may proceed with an analysis completely 

analogous to F as was presented by Pridmore-Rrown (1972) and modified in 

Section 2.  For brevity, however, we shall only write down the important 

end results and definitions, keeping the same basic notation.  The nota- 

tion and meaning of the various quantities shall be the same as for the 

F -component, except for the identifying subscript / (for /-component) in 

areas where the distinction is ^ixessary  for clarity. 

3.1 Representation in Terms of a Shifted Contour 

As before, we start by shifting the hairpin contour to the right over 

N poles, where ka>>N>>l, resulting in a finite sum of N residues and an 

Integral over the contour C shown In Figure 2.  In these contour Integrals 

we expand the angularly dependent functions In powers of —, retaining terms 
v 

up to 0(v  ) in the integrand as was done for the E -component. 
Ö 
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Uci 
1 llm 

v   ' » 
o 

fsln9. \'i 

slnÖ /   slin|) t-^      Jv(ka)  dv     (3.1) 

G\i 

2^ci 2*1      w •> ■    / \slnO I 
cosji 
cos^ 

OJ 

i-
v       j'ika)  dv    (3.2) 

v 

where the expansions of A  (0,9 ) and A'  (0,9 ) are the expressions in 
iv    o      2v    o r 

the hrackets and 

J   (ka) 
5l  (ka) = CT Jv(ka> + öt  J , (ka) v       ka v      2ka      v+1 (3.3) 

From the above it is evident that the P.. ., will result in a first-order 
Ipci 

contour integral.  P2^ci, on the other hand, will result in a zeroth-order 

contour integral arising from the first term of (3.3) and a first-order 

contour integral from the last two terms of (3.3).  The first two terms 

of (3.3), however, vary as — as compared with the other contour integrals 

anu hence may be neglected.  This is also the reason why the second con- 

tour integral in the Eg- component goes to zero and does not have any 

significant contribution to the transition field.  We shall consider this 

next order in ka for the E,-component only so as to gain some insight into the 

significance of each of the terms in the final E, expression. 
v 

3.2 Zeroth-Order Contour Integral 

By expanding  — into traveling waves valid for each of the two sec- 
COSl^Q 

tions of the Cv contour (lnn)>0, lmv<0) and substituting the Sommerfeld 

integral representation of the Bessel function we find for the zero-order 

contour integral 
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,(0) 
2^ci 
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ATT \     /       •/r n=0 ; 
4) 

where 4 (Y,6) IS given by Equation (23a) of Section 2.1.  For convenience, 
n 

we show In Figure 3 the C contour and the deformed contour passing 

through the saddle points.  Figure 3 also shows the location of the simple, 

poles ^a10»a20,
a
30) of the zeroth-order contour integral that must be crossed. 

The Indicated branch cuts are associated "1th the singularities (a  , a ) 
' 10   70 

of the first-order contour inteörals to be considered In the next section 

and are taken parallel to the Imaginary axis. 

We may now write the field arising from crossing the poles and the zeroth- 

order transition field from the Integration along the deformed contour 

passing through the saddle points as 

, ( 
2* " " 5^ (S?) 

S 1 .-lteM»"-SW^-«o-)H<.-V.) 

I 

elkarT(u10) I (3.5) 

where T(u  ) is defined as before.  As in the E case, the contributi ons 

from the saddle point at y ^ * for u.  and u  cancel one another since 

T (u) ■ -T (-u).  It is Interesting to note that these fields differ by 

the factor — from the corresponding fields of the E -component. 
ka • 

i 
Ö 
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We have purposely considered the terms proportional to (ka)  so that 

we may compare the different types of fields with the corresponding 

fields of the O-component.  It is immediately evident that the optical 

field in this case is not at all significant.  Therefore, these terms 

must be neglected if the O-component and the (^-component are to be 

computed to the same order in ka, i.e. (ka) 

3.3 First-Order Contour Integral 

In the evaluation of the first-order contour integrals again we 

I 

Ü 

E 
i 

i 

D 
fl 

make use of the traveling wave expansion of the function —^-— and 
slnV0 

1  for the shifted hairpin contour C  .  In taking the deformed C 
cos4;0 

T 

contour through the saddle points we encounter brancb points associated 

with the logarithmic singularities of the exponential integrals.  The 

contour Integrals associated with J  (ka) in fiAt4   and P9A„^ give Hci 2*cl 

contributions Identical to those of the Ep-component and can be immed- 

.  (1) 
lately written by analogy. However, the contour integral of P-x 

arising from the second factor of (3.3) varies as 1/ka and need not be 

considered further.  Thus, 

( 

'l* 

i)     ^   /stnex (1) (1) 
■r  iBF   («jo) H(a10) + iBR   (a20) 

+ r 
Ci(ka - TTM) "I 

U(u10)J 

(1)A 
P =  0 

24>cl 

22 

(3.6) 

(3.7) 
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The ov.ly first-order contour Integral of P^^ which is significant 

(magnitude proportional to (ka)"^) is the one arising from the last 

term of (3.3).  This contour integral has the form 

ikacosy  lY ' (1)B 

TF /dYe 

CY 

tj (iv0 (a - Y))- E1(iv0o) (3.8) 

differing from the previous first-order contour integrals by the factor 

elY in the integrand.  The same process of Integration through the saddle 

points at Y = 0, Y = TT, and around the branch points is carried out as 

before, giving 

' ka 

-Kka-TT/u) 

["J <V - "J vl] (3.9) 

It is pointed out that in the above expression we have deleted the phase 

factor e - 2ka  .  The functions iMu) and the branch cut contributions 

I   (a) differ from their counterparts in the E0-component but have 
BR4> H 

essentially the same properties.  Unlike the case of the Ee-component, 

the above contour integrals through the saddle point at Y ^ ^ for u 

and u  result in a net contribution to the field since Ux(u) is not 
30 v 

an even function of u and hence U. (ü ) i< U* (G ).  If upon further 
<P  20     ^30 

examination this contribution is found to be insignificant, then these 

factors will not be included in the computation of the field. 
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3.A  Evaluation of the E .-Diffracted Field 

The diffraction field of the E,-component Is given by the sum of 

the residue series. 

o 

The residue series P .   and P„.  ^ are found from the expansion of 

the functions Bln(e, eo) and B2 (0, eo), respectively, and the asymptotic 

representation of the Bessel functions J (ka), J  -(ka). Thus, 

N     v -v 
Pl*reS 

=   5   "T^ Bln(e'eo) * " ^       ^) (3.11) 
n=l  v _ w n ^ 

n 

0 v-- I, i^-»;„-^^4(i)\ 
i 

(x) (3.12) 

where Bln (e,9o) and R2n(e,9o) are given by (13) and (13a) in Section 2.1. 

Both residue series converge in the ordinary sense.  This summation is 

accomplished by expanding the coefficients B  (0, 9 ) in powers of 1/v 
In 

and B2n ^'^V in Powers of   (0) and retaining the leading term in each 
a u 

expansion.  However, on retaining only terms which vary as (ka) 2, as 

in the Ey-component, we are left only with two convergent first-order 

series denoted by ^4,(9,9^ and R2<j)(9,90) and defined below: 

N 

N 
R2^e.eo) - T      R2^(9,90) (3.14) 

n«! 
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where 

and 

Rln(«)(e'eo) 

2n<)) o 

/ Sln9o\ 
y sln9 j 

/sln9\ 

\sinOy 

(0) h (0) -lv-     Tt 

.    (n) 
55    sinM   ^   ' (0-9  )   e       n 

n o 
TlTT 

(3.15) 

(3.16) 

are  the   individual  terms  in  the  two series.     The details  of  the  expansion 

rf Bln(9,90)   and  6^(9,90)   leading  to 8^,  R^, R2n^,  R^ are  included 

in Appendix  B.     The  diffraction  field may be now found  by  the  sum  of   the 

two series  as 

„Kka-u/'O C -i      r ^"liT ,-^- 

(3.17) 

where 

r>   -rn 
P

V_L (cos9) 
n 

1*4 
vn    -h     0/9v)P ■■,n1 (cos90)   | 

2 n 

exp(-ivnTT) Rln*(e'9o)       (3-18) 

(8/99)   ?~m  .      (nn )s9) 

2n*       , 2 _W 2 -m 
^n    t    (9   /9Vi99„)P    ,    (cos9  ) 

exp(-lu  TT)   -R    A(9,90)     (3.19) 

y-lj   '      '   o' |p 

and Rlr^   tfl|«0>,  R2n^(Ö»eo)  are deflned  by   (3.15)   and   (3.16). 
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We  also havel 

Ru(e. V _L/sinM 
2TT \sinO / 

sine \   ' 

2* 

/sine \ 
0    2TT \ siney 

gj^Ca,?;) - g^e •■>] 

1,(0, c) - gifß. ;) 

(3.20) 

(3.21) 

B 
i. 
i 

i 

il 

(0) 

(n) 

= (tt - % ♦ S) 1 
2    Ö, 

=   (n + ij + HI) I 
2    9 

The  functions g1(a,^)   ,  g^B.I)  are  obtained  from g1(a,?), 

g1(ß,Oby replacing C with   (C+l) .     All other  quantities  have  the  same 

meaning as  for   the Eg-component  and have  been defined   in Section  2.3. 

We  are now in  a  position  to  express  the radiation field  of   the 0-component 

as  a  sum of   transition and  diffraction fields  as was  done  for  the 

Eg-cotnponent.     In summing   the  various  fields  and normalizing  to  the  same 

factors as  for   the  Eg-component,  we find 

$*    ■ im sin   (m(j)) 
/    cosöX- 

\    sinQ   / 
exp[lk(r+a)] 

(3.22) 

D 
II 
il 
il 

where 

-4, E      ^ 0   v0 

2iTi  cot (TT - 9  ) 

ka 

I "J 
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exp(lkr) 
TF.   ■ —B  e 

* 2n 

-1IT/2/      1 

; in9 

fTT"   l(ka-iL) 
r ^ V"^^ + ^ ^o) + rJ-e ? u(u10) 

sin« 
r i_    (a,rt)' H(ain) + i    ' (a,n) -rJ—e 4   n (u,n) 

BR.   ^10' 10' BR^   vu20' ^ ka >V"10J 

V 27     -i(ka - ^/A)  r *   ,. 

ka 
fu* (ü9n) - u* ca ) 1 
L *       20 <t>       30 J 

B^ 
(9,90)   -   (2Tri cot0o) 

sinÖ SCw+Din»]--^^^8»««] sinQ, 

0 

fl 
LJ 

0 
a 
I! 
0 
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20 

20 
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it - a 
20 

■   TT-   U 
20 

IT-    U 
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Also,  R,   ,  R.   ,,  R~   ,  R„       are defined by  equations   (3.13)»through   (3.16). 
1$      ln4)       2(|i      2B4 

U   (u)  and I-,,   (a)   are given  in Appendix A.     All other  quantities have  the 

same meaning as   for  the EQ and may be found   in  Section  2.     As  for  the 

En-component,   for a near  -"72   the  asymptotic   form of   (A-12)  must be used  for 

I       (a) 
ER* 

2 TT e 

(1) 
BR41 

i(ka  cos a + a ) 

the  numerical  computation  of   TBR.(a).     This   is  easily shown  to be 

ka sin a   -1 
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Since this Is of order 0(l/ka), the contribution of the branch cut in the 

vicinity of a = IT/2 can be neglected entirely without affecting the 

results significantly.  It should be noted that the two diffraction 

coefficients of the 0 and ^-components have the same variations in ka 

but in general will have different values at a given point in space. 
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4.0 MEASURED AND COMPUTED ELEMENT PATTERNS ON A CONE 

The computer program which has been developed for conical array 

pattern analysis has been modified and executed on the Control Data 

Corporation computer (CDC 6600).  The CDC 6600 computer is preferred 

because of its g-eater accuracy and higher speed over the IBM 370/158 

computer previously used in the pattern analysis problem. 

During the course of the development of the modal series program 

the accurate computation of the Associated Legendre function P  (cos©) 

was questionable over certain ranges of 0.  Specifically, the chosen 

TT IT 
expansion was valid  for — <   0 < 5 —    but  it was  used  for  computation of 

6       6 

the function for  < 9 <Tr by first computing ?m  (cosO) with 
72+2m v 

v ~ 72+2m.     Backward   recursion was used   to obtain  the value  of  the  function 

of  the desired degree.     Some  details   in checking  the accuracy of   the 

results   in both  the upper and   lower  extension  limits of  applicability 

of  the  expansion  are  Included   in the  first Quarterly Report 

(Bargeliote^,  197A) . 

The  computed   patterns,  using  the  first  fourteen modes  of  the modal 

series,  have been normalized   to  the  largest value  computed   for both 

polarizations  for  either  the  circumferential  or  radial  case.     Computed 

and measured  elevation cuts  are  shown  on an extended 9 -scale  to give 

a  single view of   the  elevation  cuts.     Since  the  cone under   study  has  a 

0 o 
10    half-angle,   the  position  of 9"80    was selected  for  the  computed 

azimuthai   cuts.     This  corresponds  to  the broadside of  the  conical   surface. 
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Measurements were made on an experimental 10 half-angle cone at 

a frequency of 10.38 GHz with the slots 6.22 wavelengths from the cone 

tip.  This slot location corresponds to ka = 39 radians from the cone 

tip for which a complete set of patterns have heen computed with the 

modal series program.  In both the circumferential and the radial case, 

the slots were fed by a half height X-band waveguide. Where possible, 

computed pattern values are shown on the same scale for comparison. 

4.1 Radiation patterns of circumferential slot. 

Figure 4 shows the 0-polarized patterns for «5 = 0° and «5 = 180 

together with corresponding computed patterns.  There is excellent 

agreement between the measured and computed patterns throughout the 

cone tip region and the broadside region where both patterns are quite 

uniform.  The measured pattern drop-off for <5 = 0° and 9 greater than 

140° is due to shadowing at the base of the cone by the absorbent material 

in which the cone was set.  Similar drop-off is observed In the measured 

pattern for <S = 180° for the same 0 values except that this is not as 

noticeable since the computed pattern in this region is at a much lower 

level relative to the ^ = 0 pattern.  Measured 0-polarized patterns are 

also shown for 4  ■ 45°, 6  = 225° and «5 = 90°, rf = 270° in Figures 5 and 

6, respectively.  In Figure 6 the corresponding computed pattern values 

are also shown. There appears to be a 2° difference in the position of 

the null between the computed and measured patterns but this is probably 

caused by Inaccurate alignment between the transmitter and receiving 

antennas.  This also explains the slight asymmetry in the measured pattern. 

The shadowing by the absorbent material for Ö greater than 140° Is 

evident in all measured patterns.  The above two patterns also show that 
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the pattern level  at  «5 =  135     is  approximately  10 dB below  that of p = 90   . 

The «5-polarlzed patterns  In elevation  are  shown  in Figures  7 through 

9  for  the  same  azimuth positions  as  for the  0  polarized  patterns.    Azlmutha] 

patterns  for both  polarizations  at  0 = 80    are  shown   in Figure  10. 

Excellent  agreement   is  seen between computed  and measured  patterns of 

Figures  9 and  10  considering  the  fact  that  computed  pattern values were 

made every 5 degrees  in 6 and   10 degrees  in ^. 

4.2    Radiation patterns of  radial  slot. 

The  tip section of   the  10° half-angle cone was modified  to accommodate 

a radial  slot  6.22 wavelengths  from the cone  tip.     Tk« edges  of  the wave- 

guide were carefully taped  to  obtain one-half wavelength  at  the operating 

frequency.     A photograph of  the  cone mode with  a  radial  slot  and absorbent 

material  surrounding  the base of   the  cone  is  shown  in  Fgiure  11. 

The computed  patterns  shown  together with   the measured  patterns 

have been normalized  to  the  largest value  computed  for both polarizations 

using  the first   fourteen modes  of  the modal  series.     This   largest value 

was computed  at   the  field point  P(«5,9)  ■ P(0o,80o),     As  expected,  this 

point  is broadside  to  the  conical  surface  and   lies on the  plane normal 

to  tht conical  surface and  containing the  radial  axis  of   the  slot element. 

For meaningful  comparison of measured  and  computed  patterns,   the 

reference  1evel  cf   the measured  patterns was  also  taken at  broadside at 

^ = 0°. 

Figure i2  shows  the <5-polarized patterns  for j$ » 0° and <f = 180 

together with corresponding computed patterns.     Therp  is  excellent agree- 

ment between the measured  and  computed  patterns  throughout  the cone  tip 

region and  the broadside region where both  pattern;   are  quite broad. 

3^ 



ü 

1. 
I 

,1 

1. 
jli 

ö 
0 
fl 

0 
I 
0 
(1 

II 

L z? 

n 
-» 

W 

c 
0) 
ki 

u 

u 

'/) V 0 +-» 
V <*■> 

M M 4 
: bc fl«o ' 

V „ o 
Q XJ   00 

rt u   " 
0 rt)  "IS 

4: 0 ^ 

1 o 
•• II 

;. i. 
3 o 
in «« 
<\i ■»-< 

<D O 

2 CO 

<0 

35 

iWIW»p»M>>BIM»WBMIWW|IWt! 



ö 
I 
ö 
I 

Li 

IG 

o 
0 
ö 
1 

in 

    

i 

36 

m 
v 
ti 
h 
00 
Hi 

Q 

it 
■a 
0) 

H 

d 
v 
u 

o 
M 
■~- 

.■< 

C 
h 
V 

rö0 

OH  IT 

^N 
N    || 

•-H 
»H   -© 

r—( •> 

oo 

•• II 

v -^ 
fl o 
en *w 

(U   o 
»H   i—i 
•4 vy 

at 

9 

lM 



I 
1 

1 

[i 

Ü 

ö 
8 
B 
I 

ll 

'S 

O 

IflP) «3AAOd 3AI1V13U   dj 
I 

■ 

1  
1 

■ 

i 

o 
o 

I 

Of; 

iN3NOdl\IOD IHd '9P Nl U3MOd 

37 



i 
D 

I 

Ü 

U 
i 

fl 

fl 

0 
0 

(SP) «3rtA0d 3AliV13« 

38 

CO 

•<     Cfl 

2 
if)  'XJ 

C   rt 

<u o 

0,0 
B   r-H 

c c 

a 
• ■-4 

mi.......... MM ...... jmi[|i«MwiiKiWiWiwi(i »MKWIII MMH 





^p "•r 

D 

I 

i 

Ü 

i 

I 
I 
1 

o 
c 
00 

/* *ZZ 
o 
o 

V 

JLNaNOdlAlOO IHd eP Nl dBMOd 

■;, 

C 
U 
a) 

nl 
eu 
■r 

N 

'o 
cu o 

I o 
-© 00 

^ II 

II 

2° 
"^ II 

IN 
^^ 
o o 

C   n) 

XI 

3 fM 
to -^, 
(tJ -< 

U. 

40 



mmmmikmmmm 

\ 

I 
I 

1 
i 

;, 

[] 

D 

i 
I 
1 

Me&lured  ^-polarised patterns are also shown for 4      10°,   4      190°, 

fli = 40   ,4      220°,   4      90° and 4      270° in Figures 13 through IS.    Computed 

pattern values are also shown in the same figures  for comparison.     Figure 

15 shows a 3    difference in the position of the null  between the computer! 

and measured patterns but this  is probably caused by misalignment between 

the transmitter and   rrceiving antennas.     It would also explain the slight 

asymmetry in the measured pattern.     The shadowing by the absorbent 

material for 0 greater than  140" is again evident here.    The above figures 

also show that there is a difference of 4 dB in the maxima of 4      0° and 

4      'HI    pattern«!   whereas the pattern maxima at 4       180üare approximately 

14 dB below that  at 4      0   .    As mentioned earlier,   the maxima occur at 

the broadside to the conical surface. 

The Q-polarised patterns in elevation are shown in Figures 16 through 

19 for the same azimuth positions as for the d-polarized patterns.    These 

figures clearly show that unlike the patterns of a circumferential slot on 

a similar cone,   the cross-polarization is well below the dominant polar- 

ization at the same azimuthal angles.    The shadowing by the absorbent 

material at the base of the cone is clearly identified  in these patterns. 

Since the pattern levels of this polarization are approximately  18 dB 

below the reference level,   the misalignment of the transmitter and  receiver 

antennas is also more apparent. 

Azimuthal  cuts at various angles,   including the broadside of the antenna 

element,   are shown for both polarizations in Figures 20 through  24.    From 

Figure 21  it is  seen that the measured broadside pattern of the «i-polariza- 

tion exhibits a broad maximum at d  =0    and is in very good agreement with 

the computed pattern.    As stated earlier,   this has been selected as the 

reference point for all patterns.     In the 0-polarized azimuthal  cuts,   where 

the levels are considerably lower than the  reference level,   the shift of 

the null between measured and computed patterns  is more apparent.    At 

other points,   however,   the agreement between measured and computed 

values is very good.    The 0-polarized pattern levels are in all cases at 

least 18 dB below the reference level. 
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5. RECOMMENDATIONS   FOR  FURTHER   INVESTIGATIONS 

Computed   element  patterns   using  the  normal   mode   series   computer 

program  have   shown   excellent agreement  with   measurements   on   an   ex- 

perimental   model   with   both   types   of   slots.      Using   the   model   series 

for  the   computation  of   exact patterns   the   number   of  modes   required 

for  convergence   of  the   series   increases   as   the  distance   of  the   slot 

location  from  the  tip   of  the  cone   increases.      Computational  difficulties 

from  accumulated   round-off  errors   may   also  affect  the  accuracy   and 

limit  the  applicability   of  the  modal   series  program   to   element  positions 

not too  far  from   the   cone   tip. 

We also have now complete expressions of the  E^  and E^, radiation 

fields In terms of optical,   transition and diffraction fields.    Furthermore, 

it is seen that the diffraction coefficients of both components are only a 

function of the angular coordinates and not the location of the radiating 

element.     The diffraction fields for any element location may then be 

found by the product of these diffraction coefficients and the factor con- 

taining the information of the location of the radiating element.    The 

diffraction coefficients need be computed only once,   thus eliminating the 

repetition of lengthy computations.    The optical and transition portions of 

the fields,   on the other hand,   are given In terms of functxons that are more 

suitable for numerical computation than the modal series expressions. 

In order to utilize effectively the  results of the above approximate 

approach for computation of radiation patterns,   the expressions of both 

polarizations must first be programmed for use by the digital computer. 

The new program should be built in "blocks" as much as possible,   so as 
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to utilize certain existing computing routines but more importantly to 

facilitate the integration with the modal series computer program.    Such 

an integration of the two computer programs will be necessary since the 

approximate expressions,   by their nature,   fail to yield satisfactory  re- 

sults in the regions near the cone axis.    Also,   unlike the modal series, 

the asymptotic approach cannot be properly applied to radiating elements 

near the tip of the cone.    Thus,   the combination of the two programs will 

tend to complement one another. 

Once the newly developed computer programer is tested for general 

accuracy and proper behavior in critical regions,   it will provide the 

means for computing radiation patterns of both polarizations from slots 

on a cone.    The testing should involve computation of patterns for identi- 

cal slot locations that were computed by the modal series and verified by 

measurements.    In addition to the above numerical analysis,   the impli- 

cations of the limiting process discussed in Section 2 should be investi- 

gated further. 

The analysis technique outlined above would allow the computa.tion 

of patterns to verify the equivalence principle pattern synthesis technique. 

Additionally,   the technique could be easily extended to analyze mutual 

coupling and impedance of radiators on a cone from a rigorous approach 

and provide a check on the results obtained by the geometrical theory of 

diffraction. 
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APPENDIX A 

EVALUATION OF  CONTOUR   INTEGRALS 

In  the  evaluation   ^f   the first-order   Integrals we  are  confronted 

with  Integrals  of  the  following  form. 

/ 
C 

Y 

1k a cos y in -3-    dY 
a-Y 

(A-l) 

In  this  expression C'   is   the deformed contour   (Figure  A-l)  passing 

through  the  saddle point   Y = 0.     In addition,  when evaluating  the 

contour  integral  of  Eq.   3.8  for  small a,   the  following   integral  occurs, 

/ 

i k a   cos  Y      iY  ,       „ 
e e In -S_   dY 

, a-Y 
(A-2) 

The  first  integral may be  obtained  as a special case  of   the  second so 

that  only the  second  Integral will  be discussed here.     When a>0  the 

deformed  contour must  include a  section along  the branch cut.     When 

a<0  the branch  cut  lies  entirely below the  deformed  contour  and   there  is 

no integration along the branch cut.    When a>0 the path may be  subdivided 

into  three parts  as  illustrated  in  Figure  A-2.     The  integral may  then be 

written as follows: 

/ 

l(k a   cos Y+Y) 

e In   (-2U  dv - 
a-Y-' 

/•  / 

f 
j 

(A-3) 

Yl 
Br 

Y2 
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Figure A-I,  Contours of Integration 
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■y-planc 

Figure A-2.     Contour C. 
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Along  C  ,   the  logarithm of  a-y differs by  -1?^ from  the value  it would  have 

have  if  there were no branch cut.     Consequently,   the   integrals along  C 

and C 2  can be treated as an integral taken along both curves as  though 

there were  no branch  cut  plus  an  integral  along C  „.     The deformed  contour 

integral may now be written in the  following form. 

/ 

i(k a    cos Y + Y) 

C ' 
Y 

In   (—)dY  -      / e 
Ot-v J 

(k a    cob  Y  + Y) 

Ln   (-3-)   dY 
a-Y 

C C 
Yl   +  Y2 

(A-A) 

+ Ui I i(k a    cos Y+ Y) 
I dy     + 

Y2 

/ 

i(k a   cos Y-*  Y) 

ln(_^_)dY 
a-Y 

where arg Ln(a-Y)   is  restricted between -TT  and TT . 

The  integral  over  the branch cut  is  obtained as  follows; 

Y, 

h, . ■ /•' 

(k a    cos Y + Y ) 

Yl 

P ' +  i2TT      e 
w n 

Ln  (^7)dY + 

(k a    cos Y+ Y ) 

dY 

J[    i(k a   cos Y + Y) 
LnHMdY 

a-Y 

(A-5a) 

LBr 

Y 
/i(k a cos Y + 

6 

Y) 
dY 

(A-5b) 

where Re Yi"  a 
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The deformed contour may now be written in the  following form: 

I- l(k a cos Y + Y ) 
ln(-iL_)dY 

0"Y / 

l(k. a cos Y+ Y ) 
Ln(_2_)dY 

C  ,+€ 
Yl     Y2 (A-6) 

«, |, 
i(k a cos Y+ Y) 

i dY 

where C^ is a contour from a vertically to C „ and then alone C  as 
Y2 "  y2 

shown In Figure  ^-2 . Since, as Imy *•- 00, eikacos Y approaches 

zero, for Re Y between 0 and 1 , the contour C, may be deformed to 
2 • 

coincide with the branch cut down to ItnY"*- - 00.  Then the total deformed 

contour integral has the following form 

/• 

1 (k a cos Y + Y) 
]n(-±-)dY 

a-Y f 
i[k a cos Y +Y] 

Ln(_)dY 
a-Y 

C , + C 0 yl    Y2 
(A-7) 

+ 12"/ 

i(k a cos Y + Y) 
dy 

Bro 

where the subscript Br«, Indicates a vertical path along the branch cut 

from a to a - i "» . 

(1) 
The branch cut integral, denoted by I   , may be obtained as 

Br v 

follows. 

Let  a new variable y be defined by  the following relation: 

Y ■■ a -1 y (A-8) 
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Then  Ip       takes  on the   following  form: 

i'1' w ■ 
Br<J) 

00 

1k a COSY  ly e   'dy. 

where t" ( a -   iy). 

(A-9) 

1 On using the  relationships cos (a-  iy)  « cos acosh y + i sinasinhy 

1     i 

u 

i 
[ 

0 
i 
c 

I ß 
n 

Br 

sinh y ss y 

cosh y  =  1 + y  /2     ,   the  following  expression  results: 

00 

l)     , i(kacosa + a)   /     i^.   cos n fy2 +  i  2 tan a' y] (A-10) 
(a) -   27r e /    e 

ft ij dy 

where 

tan a'   =   tan a   - 
k a cos a 

which on completing the   square  in  the  exponential becomes 

ka (1) Kka cos  a+ a+— cosa tan2 at) 
I       (a)  -  2* e 2 

Br* 

ka cos q   [y + i  tan a']2 

dy 
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The Integral in (A-ll) can be put into the forn, of r complementary 

error function integral by the following transformation: 

giving 

and 

i JS£    cosa[y+i   tana* ]2 

2 

t =   Y ka cos a 
21 [y+ i  tana   ] 

dt / ka cos  a 
V        21 

dy 

•JQ      \ ka  cos«       I 

7 
e"t    dt 

1 ka cos a' tan q' 
2 

ka (1) i(kacosa+   a   + -tS. cos a  tan2 q'-   1) 

^ 
2-n        erf c 

R a cos q 

(^/ 1 ka cos a tan q' (A-12) 
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Only the integral over C  + C  remains to be evaluated.  Let y'  be 

the real part of Y and let y« be the imaginary part of y.     Then, on 

C  + C „ 
>1   Y2 slnh y" ■ - tan y' 

To perform the evaluation the following substitution is made 

= sin Y' / (cos Y') MI/: 

Then on C  + C  the following relationships hold 
Yl    Y2 

! 

1 

D 
Ö 

0 
8 
I 

Y  ■  sin (.[^Y^-i^i. 
ArHiT- v2  J 

1/2 

VT^Tä .v2V/2 

i       2 ) 

dY 
AVA -v2  )   (v4 + 4 -v2/vl* + 4^ 

i ka   cosY ika       -k a V 
e =    e e 

dv 
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-ka v 
If ka is large then e      is very small except when v Is near zero. 

Then Eq. (A-13a and b)   reduce  to 

-1   I 

Y^ e           /Tv 

dY ~ e      4   STdv 

If the additional substitutions 

v = /k7~ 

a = e -^ -J^-Jl 

are used, the following expression results 

i(k a cos Y + Y ) 
Ln(-2-) dY 

a-Y 

C ,+0 
Yl  Y2 —   ifka-ib2- JLI     # * < ^v2 2n   L       u J      f -(x-ib)^ 

v^T J _. 
Ln (_iL.)dx 

w-x 

b = 
k e 

where /2ka 

(A-1A) 

(A-15) 

I 
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Let U.(u) be defined as follows; 

U (u) - ■    ! «      hn(JL.\dx 
, \w-x / i jr 

-(x-lb)2 
U
A(
U
) ■ Z I •     Ln(w-x) ■■ Ln (w) 

(A-16a) 

(A-16b) 

When ot<0 the deformed contour does not deviate about a branch cut. 

In that case, i.e, when Im w<0 only U. (u) contributes.  It is necessary, 

therefore, to determine methods for evaluating U^Cu).  Because of 

characteristics of the logarithm, different series expansions must be 

used for w in the upper half of t:he complex plane and for w in the lower 

half of the complex plane.  There will be a discontinuity as w crosses 

the real axis.  To determine the various expansions consider the integral 

portion of F,q. (A-16b). 

1 

Mi 
0 
0 
I 
I. 

V 
-' —«■ 

-(x-ib)2 

e     Ln (w-x)dx (A-17) 
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This function Is analytic In the upper half-plane and in the lower half- 

plane.  The upper half-plane will be considered first.  If Im(w) is 

greater than zero Fb(w) is differentlable and it is possible to write 

the following expression 

w 

F (w) 
b 

Fb < ie) + f Fb (y)dy (A-18) 

where e is a positive real number and the prime denotes differentiation 

with respect to w.  The term P.' (w) is given by the following expression: 

Fb <w> = v4 

" /    x-w 

-(x-ib)' 
2 

dx Im w >0 (A-19) 

For w in the upper half-plane the following expression is valid. 

I; 
l.i 

li 
0 

x-w 7 
0 

-i(x-w)y 
e      dy Im w > 0 (A-20) 

On substituting  this  expression  into  Eq.   (A-19)v   reversing  the  order 

of  integration,   the  following expression  is  obtained: 

F^   (w)  - - i/Fe 
-(w-ib)2r 

1  - erf   (-i[ w-ib]) Im w >0 (A-21) 

-(w-ib)2 *    i,n(w-ib)2n2"+1 

F^   (w)  - - i/iT e +  (w-ib)2w(~1)  1-3-5-• • (2n+i)    ^ w > 0 
n-=0 

(A-22) 
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This function is analytic in the entire complex plane Including w = 0. 

In Eq. (A-18) the lower limit of the integral may be set equal to zero 

and F^Cie) may be replaced by ^(10 ) where 

i 
Fb (i0+) = lim Fh (IB) 

e-K) 

(A-23) 

This limit is given by the following expression 

Fb   (10+)   -    i 1 
-(x+ib)2    -(x-ib)2 

(e +e     ) Inxdx + iiL [l+erf(ib)]        (A-24) 
2 

0 

I 
r 
i 
I 
I 
1 
t I 

and is obtained using the condition -■rt<arg Inz <TT.  The integral can 

be evaluated numerically.  For such an evaluation an integration by 

parts is first performed to remove the logarithmic singularity.  The 

resulting expression is as follows: 

where 

F(10+) ■ 1(b) + i ^ [1 + erf (ib)] 

Kb) 

00 

0 

-(x+ib)2 -(x-ib)2 

+e Jin x dx 

CO 

_2 
-(x+ib)2       -(x-ib)2 

(x+ib)e      +(x-ib)e   ] xOnx-l)dx 

(A-25) 
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On using Eq.   (A-25)   and  integrating Eq.   (A-22)   the  following expression 

for F^Cw)   is  obtained when w  is  in the upper half-plane. 

nr 2n+2 2n+2T  n 
.,     vM-l)n[(w-ib) -(lb) ]2 

Fb(w)  -  Kb)  + i ^ [1 - ftrf(w-ib)]+ Z^   1-3-5. .. (2n+l)   (n+1) Im w> 0 
2 n=0 

(A-26) 

If w is in the lower half-plane then instead of Eq. (A-20) the following 

relationship is used. 

f    i(x-w)y 
J^_ = -i I e    dy Im w< 0 (A-27) 
x-w     J 

W If an analysis is carried through in a manner similar to the preceding 

one the following expression results for Fb(w) in the lower half-plane. 

D 
2n+l ,,. x2nf21 ,„ 

Fb(w) ■ 1(b) - i i [l-erf (w-ib)] + ^   ~1.3-5-• • (2.n+l) (n+l)      Im w< 0 
(-l)n[w-lh)'n+i-(lb)zn^] 2r 

n-0 

(A-28) 

The function U (u) and U(u) are then given by the following expressions 

U^(u) - Fb(w) - Inw (A-29) 

U(u) - lim U.(u) (A-30) 
b->0 
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It may be shown that U(u) is an even function of u.  In addition 

lim 1(b) ■ 

b-^O 

where C is Euler's constant. 

C 
7 

(A-31) 

C ■ 0.577215665... (A-32) 

I 

i 

0 
f] 

When Im w >0 the branch cut integral must be added.  When Im w< 0 

there is no branch cut integral.  Eqs. (A-26) and (A-28) permit computation 

of iMu) for reasonably small values of |w - ib|.  For large values of 

|w - ibj an asymptotic expansion is desired.  Such an expansion can be 

obtained directly from the integral expression.  To accomplish this 

expansion rewrite Eq. (A-16b) in the following form: 

2 
U. (u) ml        f  e"(x"lb)Ln((w-ib) - (x-ib)) dx -Ln w  (A-33) 

As long as w - ib is not pure imaginary, then as |w-ibl increases without 

limit, the main contribution to the contour integral is from U^u).  In 

turn, the main contribution of U.(u) will come from the region where 

Re(x-ib)  is a minimum, i.e., where x=Re b« |w-ib|.  Then the 

logarithm may be expanded in powers of x~i.b  and the resulting expression 
w-ib 

may be integrated term-by-term. This process leads to the following 

expression: 

UKu)   '  Ln   (w-lb)   - Ln   (w) - E —J—   F- f Si   n(w-ib)n     /ir  £ 

-(x-ib)2 

(x-ib)ne dx 

(A-3A) 

-  Ln  (w-ib)  - Ln M-V 1.3 (2n-l) 

rTl   2n(w-ib)2n2n 
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When b « 0 the following expansion for U(u)   results; 

U(u) ~ -   E l-3---(2n-l) 

2n0n 

w 

n-l     „       ^n0 n  x     2n w    2 

The  total integral may then be written as follows: 

.i  [ka  cos Y + Wl f' In -JL- dY 
a-y 

BR 
(a) B (a) - JS V ka 

i(ka-Jb2- -) 
4  ^(u) 

(A-35) 

(A-36) 

For large values of ka the b2 in the exponent may be omitted. 

An alternative derivation of the contour integral in which the 

branch cut is taken from a along the negative real axis results in 

a slightly different expansion for the integral valid for a  sufficiently 

small that cos a -1 - a2/2.  The expansion is as follows: 

/ 

i(ka cos Y+Y) 
e In (-£-) dy 

a Y 
C' 
Y 

i(ka - ib^- 1) 
"»  [tft) - i J [1 - erf (w-ib)]      (A"37) 

w ^ 0 

E(-l)n [(w-ib)2n+2-(ib)2n-t-2] 2n - In wj 

l-3-5---(2n+l) (n+1) 
n-0 

This expression is valid for Im (w) both positive and negative and agrees 

with the previous results as w-^0. 
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When a Is near the saddle point at y-n  then the Integral of Interest 

is as follows. 

■ 

/ 

i[ ka cos Y + y] 

C 
Y 

In (±±.   dY (A-38) 

i 
where C passes upward through the saddle point at n.       This integral 

leads to the following Integrals 

i 

i[ka cos a  cosh y + 1 sin a sinh y] i(a- iy) 
I e e      dy H(TT-a) 

*vi- -i(ka - ib - -, 
A 

m-(x+ib*) 

L J w -x J 

(i)" /i; 
I      (ä)  HC»)-^ 

eo 

*^     t. 

(A-39, 

-i(ka -  ib    - -)      . 
U*( «  ) 

9 

where 

TT -    a 

Ika 
u    E     ^—    (IT  - a) 

w ä   .'fr a) 

I 
I 
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APPENDIX B 

EXPANSION OF IV,     (0,   0   ),   B.   (0.0   ),   B'    (0,   0   ) In o in o 2n o 

I 

I 
i 

I 
I 

Ü 

0 
0 
Ü 

y 

Expansion of B?     (0,   0   ): r      In o 

We begin with the asymptotic representation of Legendrc functions; 

'   ' sin ^ -   ilUmil coi S cosif 

wliere 

Equation   (13) then becomes 

%v 
(B-l) 

Bm(44]   mlSShtflU COS*.   _   ll^n!2 co-te   smJL (B-2) 

• m 
First-order and second-order roots of P      i   (cos 0) - 0 are then found 

""1 
as follows: 

First-order Roots 

Sin ^     =     0 

(0, , ( n   - A   4 SS}? H, 

to 

n   -   I , 2,  5, • •  . ih-Z) 

Second-order Roots 

Sin ^o    m. 

ion y0    n 

' -♦"»-    -,46 
8 ^ 

I  - 41 

cot e   cos 4» 

CO 

8^, 
(O) 

te0     -   t (B-4) 

By taking a Taylor expansion of tan {p    about  (// (1) nn 

we find 
CO , Ml € (B-5) 

cos 0 , sin (//' 
The desired expansions of  -%-    and ^-   which appear in B'      (0,   0   ) 1 cos w co* JJ In o rO o 
in terms of first-order and second-order roots are found by taking 
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f,     a *«1 i     £ 

(i'.-L) 

(B-7) 

COS^   =   tos(H'   ^) COSH'0     -   SKi(4'-%) ^^^o 

where we have taken sintssf  and cosf ss    l^ince (-^0. 

Similarly,  we find 

Sin 4;  m     sm (iv-M'e) cos4>0    +     cos^-H'o) sinvfo 

=   (-iJn    [si^^'ce-e.)   *   11  co^'V-e.)] 

(B-h) 

(B-9) 

cos^p  ■     co5[   nn^-ej -     (-ij (B-10) 

With (B-8),   (B-9),   and (B-10) in (B-2) and the asymptotic  representa- 

tion of the Bessel function the terms  in the residue series approach the 

following values in terms of the first-order and second-order roots, 

V ((D)and V  {1).    Thus, 
n n 

-£—    ^(e.ö.j    7   "   J^a)  (zntaf  e *' 
^  - 5 

I,*- ..  1.    \    Sin 9   ) 
«    5 cos^(e-ö0j 

. 1 
■2^, 

n » ) (B-U) 
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But'        -IM, -i^*i)* -^t0\ . .-, 

«   ^V, - 4.1-^ILc^iJ = 1***1 . -  i& 1    (B-12) 

where 

It » 0. 

Substituting (B-12) in (B-ll) and retaining the zeroth-order and first- 

order terms in 1//'  , the right-hand side of (B-ll) becomes 
n 

l-{^iil^ \ cos^te-a) • 

1 

ii 
n »i 

The first term in the braces   gives   Q   (0, 0   )  while  the   last  two 
n        0                                     0 

terms give R   (0, 9   ) after replacing the coefficient     1 by       o_ 

I0 

i 

nir 
"n 

Expansion of B,   (0, Ö   ) 
 in o 

On using (B-l) in (13) of Section Z,   and dropping higher order terms 

in \ / v ,   we find 

(sin 0
o \i   sin,A 

sin 0" j      0o cos .I/o' 

/                      2 i                                                   , tan ii»o 
/          (l-4m  )[cot0   coti^McotO   tan i//       -4(lf2mfp— 

«( 1 g  p ' o'     wo 

(' 
8^ 

(B-14) 
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Substituting (B-9) and (B-10) for sini//    and cos  0   .respectively, 

/BlnjMM 
in o \sinQ Q 

sin   -n (0)(8-Qu)^   (4mZ-l) cos ln ^'(Q-QQ) 

n 

B-15) 

If we now use the asymptotic  representation of the Bessel function,   we 

can express the nth   term of the residue series in terms of the first- 

order  roots,     ( j   resulting in 
n 

PT    ,   (0,C   ) ~ 
In© o 

 2. B,   (Q. 0   )i J1,n(ka)(2.ka)i    e   ">    (ka-   ff/43 

i 
I 
11 

■M    \itiay (o)   (0-Q )     e"1 i'n /.mox: 
\sinO   / 

(B-16) 

I 

I    I. i 

! 

where (o) 
n 

Ä      njT_  has been used in the magnitude factor.     The above 
0 

o 
expression may be summed to give an approximate closed form,   R, ,(0, 0   ), 

as follows: 

°2. 2    /sine 

n-1 nsl 

i ,   v (o) 
sin f   v   '   e-B  ) e       n 
 n o  

n TT 

1 
2 Tii      \ iln 

tin B      X* IfL   , . Is ) y i 
sm o       y     iL^    D 

-i v 
e      n 

(O)
(TT - e^+e) „ -i"n

(o)(-+ eo-e)-| 
-e 

1 
>1 

[TT      \ sin B   / L -I 
(B-17) 

i with gA a ,  jf ) ,   g2{ (^  ,   f;   )   defined below equation (47-c). 
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Expansion ol B,    ( 6 ,  Q    ) 2n 

On asing (B-l) in (13a) of Section (2) and dropping higher order terms 

in 1/p   ,  we find 

I   Sin9"   V CO« 0      . 
"   V   sin 9     / B-   ( 0 .   0    ) 

Zn o ö    sin i// 
" o o 

cot li/ 

[- 
(3+4m2)   cotetan^     + Cf>t »   cot ^   + 8(m-^ )    H, 

8M 

(B-18) 

We now find the first-order and second-order roots of ( ä / 08 0) P M   . i (cosOo) 

■   0,   by differentiating (B-l) and setting the result equal to zero.    Thus, 

l-4m  cos 0 
u COS  d'       - ^ 

O  K  

sin    9     8 M o 

or 

3+4m cotBosini//o 

cot t/y (I \    -    l-4m < 

/I 8 n    sin   0     J 

First-order root; 

Setting    i   - 0,   cot (//o = 0 when   ^ Q 

00   =   (" + 1 +   2l) JL 

(1) (2n M)TT_      ,   giving 
2 

n = 1,   2,   ... 
n 2      e 

(B-19) 

(B-20) 

{B-21) 

(! 

i 
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! 
Second-order root: 

(1) 
By expanding cot   t//     in a Taylor series about    ^ ,  we find from {B-19) 

:ot0{1)   -    csc2^1)   (0(2)   -    0   (1))   -*' (B-22) 

and   (// (2) 0    W    +    / 
o 

sine ;e cot   ip  W—~ 0.    Then, 

: 

(2)e       +   (l-2m)-d   =   (2n + l)^   +   e' 

(2) (0)    .      f or   %       "   M n      + T 
o 

(B-23) 

i 
To find expansions of   ^°r

S ^     and   |^4-    in terms of the first-order 
^o o 

and second-order roots,   again take   (//=(//-   0       +    ^  •    Then, 

0 -0o   = M (e - eo)  = ('•'•'•€) (i.eo) 

=   %(0)<e-eo)   +   f    (e-0o) 
o 

(B-24) 

ii 

li 

0       a      (2n + 1) ^r-    +   c 
o £ 

k-|-    +  t        ,      k= 1,3,   ... {B-25) 

Using (B-24),   (B-25) and the fact that   e    and e'   are small,  we find 

TT 

'2 
(o) 
n 

(o), 
cos   0 -sinkj-   {sin M^"' ( ö - 9 0)    +  «   "J-    cos M ^   '( 6 -  Ö „) }   (B-26) 

o '••i 
sin   0   -     sinky-|cosMn

{o)(e-  eo)    -   «   -^ sin M n
(o) ( B -   oJi    ^ ••■I 

i 0 
sin 0       =    sin ((2n+l) y+ c )   m   (-l)" 

O 6 
(B-28) 

I! 
. 
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Using the results of (B-26),   (B-27), and B-28,  we find 

n 
2    1 
n" 4 

B2n{e'   eo^ 
n 

dx (IT
1

)
2

   
J
U (

X
) ka ^nx   ' (2Trka)': e    x        4 

(B-29) 

Vsin   Ö    ;       (o)ö 
^ n  % 

(o) 1 (o) 
sinAv'(o-0   )    +   —T-Y^.COS ju-       {0-6 n 

ß 
o)     3        .   n 

n 

„      __    (3 + 4m  ) cotg 
3   _ 8 

We also take 

i -    e o 

n » 1 

-i,"(o)7rr 

-i^(o)7r 

L Mn(o)    4j 
(B-30) 

where 

^4   =   SX  <3 + 4m  ) cot    ö0. 
o 

Substituting (B-30) in (B-29) and retaining only the two lowest-order 

terms in        m ,  we have for the right-hand side of (B-27) 

t 
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I 
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0 
i 
I 
[ 
I 
1 
0 
li 
li 
0 
i 

;-.  (o) 

{sin e I   e0 

sinti^hd-dj 
(o) + (B-31) 

n 

1 

(* (0V 
ha cos/xn 

)
(ö-ö0)   -   i »?4 sin(x^o)(e-eo) 

(o) 

n»l 

After replacing the coefficient l//x   v   '     by       6 Jmr ,   the first term 

in the braces  is sumed to give a closed form approximation, 

R     , (ö, d   ),   while the last two terms are neglected.    Thus, 

QO CD 

n-1  X ' n=l 

(o) 
i0)(ö-ö0)e       n 

(o), + <?)       -iV  '(TT+^-ö) 4   /^^V^J -^a
<o)<ff-^ 

Zxril   sin0 j   / jr\ |_e 

N n=l 

I sind   X1   r 

where g^a, f),   g^/3,^)    are obtained from g^a, ^),   g2(/3,^)   by 

replacing ^ with   (^+ 1). 

(B-32) 
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